3.13.25 \(\int \frac {(a+b x+c x^2)^{5/2}}{(b d+2 c d x)^4} \, dx\) [1225]

Optimal. Leaf size=145 \[ \frac {5 (b+2 c x) \sqrt {a+b x+c x^2}}{64 c^3 d^4}-\frac {5 \left (a+b x+c x^2\right )^{3/2}}{24 c^2 d^4 (b+2 c x)}-\frac {\left (a+b x+c x^2\right )^{5/2}}{6 c d^4 (b+2 c x)^3}-\frac {5 \left (b^2-4 a c\right ) \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{128 c^{7/2} d^4} \]

[Out]

-5/24*(c*x^2+b*x+a)^(3/2)/c^2/d^4/(2*c*x+b)-1/6*(c*x^2+b*x+a)^(5/2)/c/d^4/(2*c*x+b)^3-5/128*(-4*a*c+b^2)*arcta
nh(1/2*(2*c*x+b)/c^(1/2)/(c*x^2+b*x+a)^(1/2))/c^(7/2)/d^4+5/64*(2*c*x+b)*(c*x^2+b*x+a)^(1/2)/c^3/d^4

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 145, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {698, 626, 635, 212} \begin {gather*} -\frac {5 \left (b^2-4 a c\right ) \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{128 c^{7/2} d^4}+\frac {5 (b+2 c x) \sqrt {a+b x+c x^2}}{64 c^3 d^4}-\frac {5 \left (a+b x+c x^2\right )^{3/2}}{24 c^2 d^4 (b+2 c x)}-\frac {\left (a+b x+c x^2\right )^{5/2}}{6 c d^4 (b+2 c x)^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*x + c*x^2)^(5/2)/(b*d + 2*c*d*x)^4,x]

[Out]

(5*(b + 2*c*x)*Sqrt[a + b*x + c*x^2])/(64*c^3*d^4) - (5*(a + b*x + c*x^2)^(3/2))/(24*c^2*d^4*(b + 2*c*x)) - (a
 + b*x + c*x^2)^(5/2)/(6*c*d^4*(b + 2*c*x)^3) - (5*(b^2 - 4*a*c)*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x +
 c*x^2])])/(128*c^(7/2)*d^4)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 626

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(b + 2*c*x)*((a + b*x + c*x^2)^p/(2*c*(2*p + 1
))), x] - Dist[p*((b^2 - 4*a*c)/(2*c*(2*p + 1))), Int[(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x]
 && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && IntegerQ[4*p]

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 698

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((
a + b*x + c*x^2)^p/(e*(m + 1))), x] - Dist[b*(p/(d*e*(m + 1))), Int[(d + e*x)^(m + 2)*(a + b*x + c*x^2)^(p - 1
), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e, 0] && NeQ[m + 2*p + 3, 0] &&
 GtQ[p, 0] && LtQ[m, -1] &&  !(IntegerQ[m/2] && LtQ[m + 2*p + 3, 0]) && IntegerQ[2*p]

Rubi steps

\begin {align*} \int \frac {\left (a+b x+c x^2\right )^{5/2}}{(b d+2 c d x)^4} \, dx &=-\frac {\left (a+b x+c x^2\right )^{5/2}}{6 c d^4 (b+2 c x)^3}+\frac {5 \int \frac {\left (a+b x+c x^2\right )^{3/2}}{(b d+2 c d x)^2} \, dx}{12 c d^2}\\ &=-\frac {5 \left (a+b x+c x^2\right )^{3/2}}{24 c^2 d^4 (b+2 c x)}-\frac {\left (a+b x+c x^2\right )^{5/2}}{6 c d^4 (b+2 c x)^3}+\frac {5 \int \sqrt {a+b x+c x^2} \, dx}{16 c^2 d^4}\\ &=\frac {5 (b+2 c x) \sqrt {a+b x+c x^2}}{64 c^3 d^4}-\frac {5 \left (a+b x+c x^2\right )^{3/2}}{24 c^2 d^4 (b+2 c x)}-\frac {\left (a+b x+c x^2\right )^{5/2}}{6 c d^4 (b+2 c x)^3}-\frac {\left (5 \left (b^2-4 a c\right )\right ) \int \frac {1}{\sqrt {a+b x+c x^2}} \, dx}{128 c^3 d^4}\\ &=\frac {5 (b+2 c x) \sqrt {a+b x+c x^2}}{64 c^3 d^4}-\frac {5 \left (a+b x+c x^2\right )^{3/2}}{24 c^2 d^4 (b+2 c x)}-\frac {\left (a+b x+c x^2\right )^{5/2}}{6 c d^4 (b+2 c x)^3}-\frac {\left (5 \left (b^2-4 a c\right )\right ) \text {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x}{\sqrt {a+b x+c x^2}}\right )}{64 c^3 d^4}\\ &=\frac {5 (b+2 c x) \sqrt {a+b x+c x^2}}{64 c^3 d^4}-\frac {5 \left (a+b x+c x^2\right )^{3/2}}{24 c^2 d^4 (b+2 c x)}-\frac {\left (a+b x+c x^2\right )^{5/2}}{6 c d^4 (b+2 c x)^3}-\frac {5 \left (b^2-4 a c\right ) \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{128 c^{7/2} d^4}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.69, size = 150, normalized size = 1.03 \begin {gather*} \frac {\frac {2 \sqrt {c} \sqrt {a+x (b+c x)} \left (15 b^4+80 b^3 c x+32 b c^2 x \left (-7 a+3 c x^2\right )+8 b^2 c \left (-5 a+16 c x^2\right )+16 c^2 \left (-2 a^2-14 a c x^2+3 c^2 x^4\right )\right )}{(b+2 c x)^3}+15 \left (b^2-4 a c\right ) \log \left (b+2 c x-2 \sqrt {c} \sqrt {a+x (b+c x)}\right )}{384 c^{7/2} d^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x + c*x^2)^(5/2)/(b*d + 2*c*d*x)^4,x]

[Out]

((2*Sqrt[c]*Sqrt[a + x*(b + c*x)]*(15*b^4 + 80*b^3*c*x + 32*b*c^2*x*(-7*a + 3*c*x^2) + 8*b^2*c*(-5*a + 16*c*x^
2) + 16*c^2*(-2*a^2 - 14*a*c*x^2 + 3*c^2*x^4)))/(b + 2*c*x)^3 + 15*(b^2 - 4*a*c)*Log[b + 2*c*x - 2*Sqrt[c]*Sqr
t[a + x*(b + c*x)]])/(384*c^(7/2)*d^4)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(366\) vs. \(2(123)=246\).
time = 0.75, size = 367, normalized size = 2.53

method result size
default \(\frac {-\frac {4 c \left (\left (x +\frac {b}{2 c}\right )^{2} c +\frac {4 a c -b^{2}}{4 c}\right )^{\frac {7}{2}}}{3 \left (4 a c -b^{2}\right ) \left (x +\frac {b}{2 c}\right )^{3}}+\frac {16 c^{2} \left (-\frac {4 c \left (\left (x +\frac {b}{2 c}\right )^{2} c +\frac {4 a c -b^{2}}{4 c}\right )^{\frac {7}{2}}}{\left (4 a c -b^{2}\right ) \left (x +\frac {b}{2 c}\right )}+\frac {24 c^{2} \left (\frac {\left (x +\frac {b}{2 c}\right ) \left (\left (x +\frac {b}{2 c}\right )^{2} c +\frac {4 a c -b^{2}}{4 c}\right )^{\frac {5}{2}}}{6}+\frac {5 \left (4 a c -b^{2}\right ) \left (\frac {\left (x +\frac {b}{2 c}\right ) \left (\left (x +\frac {b}{2 c}\right )^{2} c +\frac {4 a c -b^{2}}{4 c}\right )^{\frac {3}{2}}}{4}+\frac {3 \left (4 a c -b^{2}\right ) \left (\frac {\left (x +\frac {b}{2 c}\right ) \sqrt {\left (x +\frac {b}{2 c}\right )^{2} c +\frac {4 a c -b^{2}}{4 c}}}{2}+\frac {\left (4 a c -b^{2}\right ) \ln \left (\sqrt {c}\, \left (x +\frac {b}{2 c}\right )+\sqrt {\left (x +\frac {b}{2 c}\right )^{2} c +\frac {4 a c -b^{2}}{4 c}}\right )}{8 c^{\frac {3}{2}}}\right )}{16 c}\right )}{24 c}\right )}{4 a c -b^{2}}\right )}{3 \left (4 a c -b^{2}\right )}}{16 d^{4} c^{4}}\) \(367\)
risch \(\frac {\left (2 c x +b \right ) \sqrt {c \,x^{2}+b x +a}}{64 c^{3} d^{4}}+\frac {\frac {5 a \ln \left (\frac {\frac {b}{2}+c x}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )}{32 c^{\frac {5}{2}}}-\frac {5 b^{2} \ln \left (\frac {\frac {b}{2}+c x}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )}{128 c^{\frac {7}{2}}}-\frac {\sqrt {\left (x +\frac {b}{2 c}\right )^{2} c +\frac {4 a c -b^{2}}{4 c}}\, a^{3}}{12 c^{3} \left (4 a c -b^{2}\right ) \left (x +\frac {b}{2 c}\right )^{3}}+\frac {\sqrt {\left (x +\frac {b}{2 c}\right )^{2} c +\frac {4 a c -b^{2}}{4 c}}\, a^{2} b^{2}}{16 c^{4} \left (4 a c -b^{2}\right ) \left (x +\frac {b}{2 c}\right )^{3}}-\frac {\sqrt {\left (x +\frac {b}{2 c}\right )^{2} c +\frac {4 a c -b^{2}}{4 c}}\, a \,b^{4}}{64 c^{5} \left (4 a c -b^{2}\right ) \left (x +\frac {b}{2 c}\right )^{3}}+\frac {\sqrt {\left (x +\frac {b}{2 c}\right )^{2} c +\frac {4 a c -b^{2}}{4 c}}\, b^{6}}{768 c^{6} \left (4 a c -b^{2}\right ) \left (x +\frac {b}{2 c}\right )^{3}}+\frac {2 \sqrt {\left (x +\frac {b}{2 c}\right )^{2} c +\frac {4 a c -b^{2}}{4 c}}\, a^{3}}{3 c \left (4 a c -b^{2}\right )^{2} \left (x +\frac {b}{2 c}\right )}-\frac {\sqrt {\left (x +\frac {b}{2 c}\right )^{2} c +\frac {4 a c -b^{2}}{4 c}}\, a^{2} b^{2}}{2 c^{2} \left (4 a c -b^{2}\right )^{2} \left (x +\frac {b}{2 c}\right )}+\frac {\sqrt {\left (x +\frac {b}{2 c}\right )^{2} c +\frac {4 a c -b^{2}}{4 c}}\, a \,b^{4}}{8 c^{3} \left (4 a c -b^{2}\right )^{2} \left (x +\frac {b}{2 c}\right )}-\frac {\sqrt {\left (x +\frac {b}{2 c}\right )^{2} c +\frac {4 a c -b^{2}}{4 c}}\, b^{6}}{96 c^{4} \left (4 a c -b^{2}\right )^{2} \left (x +\frac {b}{2 c}\right )}-\frac {3 \sqrt {\left (x +\frac {b}{2 c}\right )^{2} c +\frac {4 a c -b^{2}}{4 c}}\, a^{2}}{4 c^{2} \left (4 a c -b^{2}\right ) \left (x +\frac {b}{2 c}\right )}+\frac {3 \sqrt {\left (x +\frac {b}{2 c}\right )^{2} c +\frac {4 a c -b^{2}}{4 c}}\, a \,b^{2}}{8 c^{3} \left (4 a c -b^{2}\right ) \left (x +\frac {b}{2 c}\right )}-\frac {3 \sqrt {\left (x +\frac {b}{2 c}\right )^{2} c +\frac {4 a c -b^{2}}{4 c}}\, b^{4}}{64 c^{4} \left (4 a c -b^{2}\right ) \left (x +\frac {b}{2 c}\right )}}{d^{4}}\) \(766\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+b*x+a)^(5/2)/(2*c*d*x+b*d)^4,x,method=_RETURNVERBOSE)

[Out]

1/16/d^4/c^4*(-4/3/(4*a*c-b^2)*c/(x+1/2*b/c)^3*((x+1/2*b/c)^2*c+1/4*(4*a*c-b^2)/c)^(7/2)+16/3*c^2/(4*a*c-b^2)*
(-4/(4*a*c-b^2)*c/(x+1/2*b/c)*((x+1/2*b/c)^2*c+1/4*(4*a*c-b^2)/c)^(7/2)+24*c^2/(4*a*c-b^2)*(1/6*(x+1/2*b/c)*((
x+1/2*b/c)^2*c+1/4*(4*a*c-b^2)/c)^(5/2)+5/24*(4*a*c-b^2)/c*(1/4*(x+1/2*b/c)*((x+1/2*b/c)^2*c+1/4*(4*a*c-b^2)/c
)^(3/2)+3/16*(4*a*c-b^2)/c*(1/2*(x+1/2*b/c)*((x+1/2*b/c)^2*c+1/4*(4*a*c-b^2)/c)^(1/2)+1/8*(4*a*c-b^2)/c^(3/2)*
ln(c^(1/2)*(x+1/2*b/c)+((x+1/2*b/c)^2*c+1/4*(4*a*c-b^2)/c)^(1/2)))))))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(5/2)/(2*c*d*x+b*d)^4,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a*c-b^2>0)', see `assume?` f
or more deta

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 263 vs. \(2 (123) = 246\).
time = 2.64, size = 529, normalized size = 3.65 \begin {gather*} \left [-\frac {15 \, {\left (b^{5} - 4 \, a b^{3} c + 8 \, {\left (b^{2} c^{3} - 4 \, a c^{4}\right )} x^{3} + 12 \, {\left (b^{3} c^{2} - 4 \, a b c^{3}\right )} x^{2} + 6 \, {\left (b^{4} c - 4 \, a b^{2} c^{2}\right )} x\right )} \sqrt {c} \log \left (-8 \, c^{2} x^{2} - 8 \, b c x - b^{2} - 4 \, \sqrt {c x^{2} + b x + a} {\left (2 \, c x + b\right )} \sqrt {c} - 4 \, a c\right ) - 4 \, {\left (48 \, c^{5} x^{4} + 96 \, b c^{4} x^{3} + 15 \, b^{4} c - 40 \, a b^{2} c^{2} - 32 \, a^{2} c^{3} + 32 \, {\left (4 \, b^{2} c^{3} - 7 \, a c^{4}\right )} x^{2} + 16 \, {\left (5 \, b^{3} c^{2} - 14 \, a b c^{3}\right )} x\right )} \sqrt {c x^{2} + b x + a}}{768 \, {\left (8 \, c^{7} d^{4} x^{3} + 12 \, b c^{6} d^{4} x^{2} + 6 \, b^{2} c^{5} d^{4} x + b^{3} c^{4} d^{4}\right )}}, \frac {15 \, {\left (b^{5} - 4 \, a b^{3} c + 8 \, {\left (b^{2} c^{3} - 4 \, a c^{4}\right )} x^{3} + 12 \, {\left (b^{3} c^{2} - 4 \, a b c^{3}\right )} x^{2} + 6 \, {\left (b^{4} c - 4 \, a b^{2} c^{2}\right )} x\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {c x^{2} + b x + a} {\left (2 \, c x + b\right )} \sqrt {-c}}{2 \, {\left (c^{2} x^{2} + b c x + a c\right )}}\right ) + 2 \, {\left (48 \, c^{5} x^{4} + 96 \, b c^{4} x^{3} + 15 \, b^{4} c - 40 \, a b^{2} c^{2} - 32 \, a^{2} c^{3} + 32 \, {\left (4 \, b^{2} c^{3} - 7 \, a c^{4}\right )} x^{2} + 16 \, {\left (5 \, b^{3} c^{2} - 14 \, a b c^{3}\right )} x\right )} \sqrt {c x^{2} + b x + a}}{384 \, {\left (8 \, c^{7} d^{4} x^{3} + 12 \, b c^{6} d^{4} x^{2} + 6 \, b^{2} c^{5} d^{4} x + b^{3} c^{4} d^{4}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(5/2)/(2*c*d*x+b*d)^4,x, algorithm="fricas")

[Out]

[-1/768*(15*(b^5 - 4*a*b^3*c + 8*(b^2*c^3 - 4*a*c^4)*x^3 + 12*(b^3*c^2 - 4*a*b*c^3)*x^2 + 6*(b^4*c - 4*a*b^2*c
^2)*x)*sqrt(c)*log(-8*c^2*x^2 - 8*b*c*x - b^2 - 4*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*sqrt(c) - 4*a*c) - 4*(48*c
^5*x^4 + 96*b*c^4*x^3 + 15*b^4*c - 40*a*b^2*c^2 - 32*a^2*c^3 + 32*(4*b^2*c^3 - 7*a*c^4)*x^2 + 16*(5*b^3*c^2 -
14*a*b*c^3)*x)*sqrt(c*x^2 + b*x + a))/(8*c^7*d^4*x^3 + 12*b*c^6*d^4*x^2 + 6*b^2*c^5*d^4*x + b^3*c^4*d^4), 1/38
4*(15*(b^5 - 4*a*b^3*c + 8*(b^2*c^3 - 4*a*c^4)*x^3 + 12*(b^3*c^2 - 4*a*b*c^3)*x^2 + 6*(b^4*c - 4*a*b^2*c^2)*x)
*sqrt(-c)*arctan(1/2*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*sqrt(-c)/(c^2*x^2 + b*c*x + a*c)) + 2*(48*c^5*x^4 + 96*
b*c^4*x^3 + 15*b^4*c - 40*a*b^2*c^2 - 32*a^2*c^3 + 32*(4*b^2*c^3 - 7*a*c^4)*x^2 + 16*(5*b^3*c^2 - 14*a*b*c^3)*
x)*sqrt(c*x^2 + b*x + a))/(8*c^7*d^4*x^3 + 12*b*c^6*d^4*x^2 + 6*b^2*c^5*d^4*x + b^3*c^4*d^4)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {\int \frac {a^{2} \sqrt {a + b x + c x^{2}}}{b^{4} + 8 b^{3} c x + 24 b^{2} c^{2} x^{2} + 32 b c^{3} x^{3} + 16 c^{4} x^{4}}\, dx + \int \frac {b^{2} x^{2} \sqrt {a + b x + c x^{2}}}{b^{4} + 8 b^{3} c x + 24 b^{2} c^{2} x^{2} + 32 b c^{3} x^{3} + 16 c^{4} x^{4}}\, dx + \int \frac {c^{2} x^{4} \sqrt {a + b x + c x^{2}}}{b^{4} + 8 b^{3} c x + 24 b^{2} c^{2} x^{2} + 32 b c^{3} x^{3} + 16 c^{4} x^{4}}\, dx + \int \frac {2 a b x \sqrt {a + b x + c x^{2}}}{b^{4} + 8 b^{3} c x + 24 b^{2} c^{2} x^{2} + 32 b c^{3} x^{3} + 16 c^{4} x^{4}}\, dx + \int \frac {2 a c x^{2} \sqrt {a + b x + c x^{2}}}{b^{4} + 8 b^{3} c x + 24 b^{2} c^{2} x^{2} + 32 b c^{3} x^{3} + 16 c^{4} x^{4}}\, dx + \int \frac {2 b c x^{3} \sqrt {a + b x + c x^{2}}}{b^{4} + 8 b^{3} c x + 24 b^{2} c^{2} x^{2} + 32 b c^{3} x^{3} + 16 c^{4} x^{4}}\, dx}{d^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+b*x+a)**(5/2)/(2*c*d*x+b*d)**4,x)

[Out]

(Integral(a**2*sqrt(a + b*x + c*x**2)/(b**4 + 8*b**3*c*x + 24*b**2*c**2*x**2 + 32*b*c**3*x**3 + 16*c**4*x**4),
 x) + Integral(b**2*x**2*sqrt(a + b*x + c*x**2)/(b**4 + 8*b**3*c*x + 24*b**2*c**2*x**2 + 32*b*c**3*x**3 + 16*c
**4*x**4), x) + Integral(c**2*x**4*sqrt(a + b*x + c*x**2)/(b**4 + 8*b**3*c*x + 24*b**2*c**2*x**2 + 32*b*c**3*x
**3 + 16*c**4*x**4), x) + Integral(2*a*b*x*sqrt(a + b*x + c*x**2)/(b**4 + 8*b**3*c*x + 24*b**2*c**2*x**2 + 32*
b*c**3*x**3 + 16*c**4*x**4), x) + Integral(2*a*c*x**2*sqrt(a + b*x + c*x**2)/(b**4 + 8*b**3*c*x + 24*b**2*c**2
*x**2 + 32*b*c**3*x**3 + 16*c**4*x**4), x) + Integral(2*b*c*x**3*sqrt(a + b*x + c*x**2)/(b**4 + 8*b**3*c*x + 2
4*b**2*c**2*x**2 + 32*b*c**3*x**3 + 16*c**4*x**4), x))/d**4

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 623 vs. \(2 (123) = 246\).
time = 1.73, size = 623, normalized size = 4.30 \begin {gather*} \frac {1}{64} \, \sqrt {c x^{2} + b x + a} {\left (\frac {2 \, x}{c^{2} d^{4}} + \frac {b}{c^{3} d^{4}}\right )} + \frac {5 \, {\left (b^{2} - 4 \, a c\right )} \log \left ({\left | 2 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )} \sqrt {c} + b \right |}\right )}{128 \, c^{\frac {7}{2}} d^{4}} + \frac {36 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )}^{4} b^{4} c^{\frac {5}{2}} - 288 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )}^{4} a b^{2} c^{\frac {7}{2}} + 576 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )}^{4} a^{2} c^{\frac {9}{2}} + 72 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )}^{3} b^{5} c^{2} - 576 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )}^{3} a b^{3} c^{3} + 1152 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )}^{3} a^{2} b c^{4} + 66 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )}^{2} b^{6} c^{\frac {3}{2}} - 576 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )}^{2} a b^{4} c^{\frac {5}{2}} + 1440 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )}^{2} a^{2} b^{2} c^{\frac {7}{2}} - 768 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )}^{2} a^{3} c^{\frac {9}{2}} + 30 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )} b^{7} c - 288 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )} a b^{5} c^{2} + 864 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )} a^{2} b^{3} c^{3} - 768 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )} a^{3} b c^{4} + 7 \, b^{8} \sqrt {c} - 82 \, a b^{6} c^{\frac {3}{2}} + 348 \, a^{2} b^{4} c^{\frac {5}{2}} - 640 \, a^{3} b^{2} c^{\frac {7}{2}} + 448 \, a^{4} c^{\frac {9}{2}}}{192 \, {\left (2 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )}^{2} c^{\frac {3}{2}} + 2 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )} b c + b^{2} \sqrt {c} - 2 \, a c^{\frac {3}{2}}\right )}^{3} c^{\frac {5}{2}} d^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(5/2)/(2*c*d*x+b*d)^4,x, algorithm="giac")

[Out]

1/64*sqrt(c*x^2 + b*x + a)*(2*x/(c^2*d^4) + b/(c^3*d^4)) + 5/128*(b^2 - 4*a*c)*log(abs(2*(sqrt(c)*x - sqrt(c*x
^2 + b*x + a))*sqrt(c) + b))/(c^(7/2)*d^4) + 1/192*(36*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))^4*b^4*c^(5/2) - 288
*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))^4*a*b^2*c^(7/2) + 576*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))^4*a^2*c^(9/2) +
 72*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))^3*b^5*c^2 - 576*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))^3*a*b^3*c^3 + 1152
*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))^3*a^2*b*c^4 + 66*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))^2*b^6*c^(3/2) - 576*
(sqrt(c)*x - sqrt(c*x^2 + b*x + a))^2*a*b^4*c^(5/2) + 1440*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))^2*a^2*b^2*c^(7/
2) - 768*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))^2*a^3*c^(9/2) + 30*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))*b^7*c - 28
8*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))*a*b^5*c^2 + 864*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))*a^2*b^3*c^3 - 768*(s
qrt(c)*x - sqrt(c*x^2 + b*x + a))*a^3*b*c^4 + 7*b^8*sqrt(c) - 82*a*b^6*c^(3/2) + 348*a^2*b^4*c^(5/2) - 640*a^3
*b^2*c^(7/2) + 448*a^4*c^(9/2))/((2*(sqrt(c)*x - sqrt(c*x^2 + b*x + a))^2*c^(3/2) + 2*(sqrt(c)*x - sqrt(c*x^2
+ b*x + a))*b*c + b^2*sqrt(c) - 2*a*c^(3/2))^3*c^(5/2)*d^4)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (c\,x^2+b\,x+a\right )}^{5/2}}{{\left (b\,d+2\,c\,d\,x\right )}^4} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x + c*x^2)^(5/2)/(b*d + 2*c*d*x)^4,x)

[Out]

int((a + b*x + c*x^2)^(5/2)/(b*d + 2*c*d*x)^4, x)

________________________________________________________________________________________